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Low-Rank Quaternion Approximation for
Color Image Processing

Yongyong Chen , Xiaolin Xiao , and Yicong Zhou , Senior Member, IEEE

Abstract— Low-rank matrix approximation (LRMA)-based
methods have made a great success for grayscale image process-
ing. When handling color images, LRMA either restores each
color channel independently using the monochromatic model
or processes the concatenation of three color channels using
the concatenation model. However, these two schemes may not
make full use of the high correlation among RGB channels.
To address this issue, we propose a novel low-rank quaternion
approximation (LRQA) model. It contains two major compo-
nents: first, instead of modeling a color image pixel as a scalar
in conventional sparse representation and LRMA-based methods,
the color image is encoded as a pure quaternion matrix, such
that the cross-channel correlation of color channels can be
well exploited; second, LRQA imposes the low-rank constraint
on the constructed quaternion matrix. To better estimate the
singular values of the underlying low-rank quaternion matrix
from its noisy observation, a general model for LRQA is proposed
based on several nonconvex functions. Extensive evaluations for
color image denoising and inpainting tasks verify that LRQA
achieves better performance over several state-of-the-art sparse
representation and LRMA-based methods in terms of both
quantitative metrics and visual quality.

Index Terms— Low-rank matrix approximation, image denois-
ing, image inpainting, quaternion singular value decomposition,
nonconvex approximation.

I. INTRODUCTION

AS AN emerging mathematical tool, low-rank matrix
approximation (LRMA) has been applied in a broad

family of real applications, such as image denoising [1]–[3],
image inpainting [4], [5], image deblurring [6], background-
foreground separation [1], [7], subspace clustering [8], and so
on. Due to the fact that the high-dimensional data inherently
possess a low-rank structure [9], the goal of LRMA is to
exactly and efficiently recover the underlying low-rank matrix
from its corrupted observation [1].

Manuscript received March 28, 2019; revised August 8, 2019; accepted
September 5, 2019. Date of publication September 19, 2019; date of current
version November 7, 2019. This work was funded in part by the Science
and Technology Development Fund, Macau SAR (File no. 189/2017/A3),
and by the Research Committee at University of Macau under Grants
MYRG2016-00123-FST and MYRG2018-00136-FST. The associate editor
coordinating the review of this manuscript and approving it for publication
was Dr. Nikolaos Mitianoudis. (Corresponding author: Yicong Zhou.)

Y. Chen and Y. Zhou are with the Department of Computer and
Information Science, University of Macau, Macau 999078, China (e-mail:
yongyongchen.cn@gmail.com; yicongzhou@um.edu.mo).

X. Xiao is with the School of Computer Science and Engineering, South
China University of Technology, Guangzhou 510006, China, and also with
the Department of Computer and Information Science, University of Macau,
Macau 999078, China (e-mail: shellyxiaolin@gmail.com).

Digital Object Identifier 10.1109/TIP.2019.2941319

TABLE I

SUMMARY OF EXISTING NONCONVEX SURROGATE FUNCTIONS φ(x, γ )

Most of LRMA-based variants follow two lines [2],
[10], [11]: matrix factorization and matrix rank minimization.
In the first line, it usually factorizes the matrix to be recovered
into two or three thin matrices. An intuitive example is the
popular nonnegative matrix factorization [12]. It factorizes
the original data matrix into two factor matrices with non-
negative constraints. And their product can well approximate
the original data matrix under the Frobenius-norm fidelity.
Recently, the work in [13] proposed a bilinear factor matrix
norm minimization for LRMA. The main issue of the matrix
factorization-based LRMA algorithms is lack of the rank
values in real applications [3], [10], [14]. The second line is
usually achieved by different rank approximation regularizers,
such as the nuclear norm [15]. Candès and Recht [16] has
proven that the nuclear norm is the tightest convex relax-
ation of the NP-hard rank minimization function. However,
many works [1]–[3], [17] have pointed out that the nuclear
norm-based LRMA may yield sub-optimal results of the origi-
nal rank minimization. The reason is that each singular value is
treated equally, which is contrary to the fact that the large sin-
gular values may contain more information of the original data.
To better approximate the rank function, many nonconvex sur-
rogates have been proposed, such as the Schatten γ -norm [18],
weighted nuclear norm [1], log-determinant penalty [19] (sum-
marized in Table I) and achieved the promising performance
in grayscale image processing. Among them, the most popular
one is the weighted nuclear norm (WNNM), which assigns
different weights to different singular values by consider-
ing the physical significance of them. Following this line,
Xie et al. [2] proposed the weighted Schatten γ -norm min-
imization (WSNM) by combining WNNM and the Schatten
γ -norm for image denoising and background-foreground
separation. In [20], the authors proposed a general-
ized nonconvex nonsmooth LRMA solver, named itera-
tively reweighted nuclear norm algorithm. To promote the
applicability of these nonconvex surrogates, Nie et al. [21]
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proposed a parameter-free nonconvex LRMA model for image
inpainting.

When handling color images using LRMA, we may
encounter two challenges. The first challenge is how to
fully exploit the high correlation among RGB channels.
An intuitive way is to perform LRMA channel-by-channel and
then combine all results together. That is, LRMA is applied
to each channel independently. This scheme is termed as
the monochromatic model. An obvious shortcoming of the
monochromatic model is that the correlation among three
channels are completely ignored, resulting in performance
degradation in color image processing. Another popular way
is to concatenate three RGB channels to make use of the
channel correlation. This scheme is named as the concate-
nation model [22]. For example, Xu et al. [23] proposed
a multi-channel weighted nuclear norm minimization model.
It first vectorizes each similar patch and then concatenates all
vectors to form a noisy patch matrix. From the perspective
of tensor-unfolding [9], the concatenation model-based color
image processing methods just use one unfolding matrix and
ignore other two unfolding matrices. In summary, these above
two schemes may fail to make full use of the correlation
information among three color channels.

The second challenge is how to preserve the local details
of color images under the LRMA framework. In addi-
tion to the channel correlation, the nonlocal self-similarity
(NSS) [24] prior is another intrinsic characteristic for image
processing tasks, such as image denoising, image deblurring.
The underlying assumption of NSS is that for an exemplar
patch, there are many similar local patches across a natural
image [1], [24]. For example, Zhang et al. [25] used principal
component analysis on the similar patches group to remove the
Gaussian noise. Combining the sparse representation and the
NSS prior, the work in [26] proposed a nonlocally centralized
sparse representation model for image restoration. Borrowing
the above idea, the advanced version of sparse representation,
LRMA as well as NSS was fully considered in the works
of [1], [2].

The above-mentioned methods may cause unsatisfactory
results for color image processing since they were originally
designed for grayscale image processing. Recently, the quater-
nion representation (QR)-based color image processing meth-
ods have attracted much attention due to its rapid development
in both theory [27]–[29] and applications [22], [30]–[36].
Due to the essential characteristic of QR which includes
one real part and three imaginary components, it perfectly
fits color image processing tasks. Using QR, a color image
is represented by a pure quaternion matrix instead of three
independent matrices or a concatenation matrix. This means
that all color channels are handled simultaneously in the
quaternion domain, resulting in the superior power of preserv-
ing cross-channel correlations of color images. For example,
inspired by the sparse representation [37], Xu et al. [22]
developed a vector sparse representation model for color
image denoising, inpainting, and super-resolution. The work
in [33] extended the sparse representation and collabora-
tive representation classifications into the quaternion domain
and achieved good performance for color face recognition.

In [35], Zhu et al. proposed a quaternion convolution neural
network (QCNN) model to extend CNN from the real domain
into the quaternion domain. It contains a series of basic models
like quaternion convolution layer. To explore the fundamental
reason of the success of QCNN, the work in [38] used the
Hamilton product to capture internal latent relations within
features. Following [35], Zeng et al. [34] proposed the quater-
nion principal component analysis network for color image
classification. To preserve the spatial structures of images,
Xiao and Zhou [30] proposed a two-dimensional quater-
nion sparse principal component analysis method for color
image recognition. Generally speaking, the main advantage
of QR over the real valued methods is the generalization
capability [22], [30], [38].

Considering the huge success of LRMA and the powerful
data representation advance of QR, one natural question is
that is it possible and reasonable to extend LRMA into the
quaternion domain to handle the three color channels in
a holistic manner? Therefore, in this paper, we propose a
novel model, i.e., low-rank quaternion approximation (LRQA)
with applications to color image denoising and color image
inpainting. Our idea is motivated by the recently proposed
LRMA [2], [3], [17] and the quaternion representation-based
methods in [22], [30], and [33]. However, different from
these methods in [2], [3], [17], LRQA incorporates the
quaternion representation into LRMA to handle three color
channels as a whole for the better capture of the high
correlation. A general model for LRQA based on three
nonconvex functions is proposed. To derive the closed-form
solution of LRQA, we first compute the complex singular
value decomposition (SVD) instead of quaternion SVD to
reduce the high computation cost and then adopt the difference
of convex method to linearize three nonconvex functions.
The main contributions of this paper are summarized as
follows:

• We propose a novel model, namely, low-rank quaternion
approximation (LRQA) for color image processing. Dif-
ferent from LRMA-based methods treating color image
pixel as a scalar, LRQA encodes each color image pixel
as a pure quaternion number, such that more corre-
lation information among RGB channels can be well
preserved.

• To achieve a better quaternion rank estimation, we pro-
pose a general model for LRQA based on three noncon-
vex functions and derive a general solver.

• LRQA is further extended to handle the color image
denoising and inpainting tasks. The experimental results
on both simulated and real color images demonstrate their
superiority over several state-of-the-art methods.

The rest of this paper is structured as follows. Section II
briefly reviews related works on LRMA and quaternion-based
methods. In Section III, we discuss the basics of quaternion
representation. Section IV proposes LRQA in detail and ana-
lyzes the general solver for LRQA. Two real applications of
LRQA are described in Section V. We evaluate the perfor-
mance of the proposed LRQA in Section VI and conclude
this paper in Section VII.
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II. RELATED WORK

In this section, we briefly review the highly related topics:
low-rank matrix approximation and quaternion-based methods.

A. Low-Rank Matrix Approximation

Given a real matrix Y ∈ Rm×n , LRMA can be formulated
as the following minimization problem:

min
X

1

2
‖X − Y‖2

F + λ ∗ rank(X), (1)

where λ is a nonnegative parameter and rank(·) is the rank
function. In Eq. (1), the first term is the data fidelity term
which aims to measure the difference between X and Y , while
the second one is called regularizer, such as the nuclear norm
‖X‖∗ = ∑

i σi . A large number of extensions of LRMA
have been presented, including robust principal component
analysis [39], matrix completion [40], low-rank representa-
tion [8], [41], robust matrix sensing [42] and so on. To address
the essential issue of the nuclear norm, truncated nuclear
norm [4], capped nuclear norm [43], partial sum nuclear
norm [44], weighted nuclear norm [1], and weighted Schatten
γ -norm [2] have successively been proposed as summarized
in Table I. In a word, the main idea of these nonconvex
approximations is that no matter how big a singular value is,
its contribution for the rank function should be 1.

The existing LRMA-based approaches work well for
grayscale images, but degrade sharply when handling color
images [23]. The main reasons are that, one the one hand, these
approaches handle each color channel in a channel-by-channel
manner, which means that each color channel is treated as an
independent grayscale image. On the other hand, they process
the concatenation of three color channels. As discussed in the
introduction part, however, it is still intractable to preserve the
correlation information among RGB channels.

B. Quaternion-Based Methods

Quaternion-based methods have received increasing atten-
tion in various applications, such as face recognition [33], [46],
dimension reduction [30], image denoising [22], since it can
treat a color image as a whole, such that the cross-channel
correlation of color images can be well encoded. Considering
the fact that an image signal can be sparsely represented by
a linear combination of the dictionary atoms, Xu et al. [22]
developed a quaternion-based sparse representation model for
several color image processing tasks. Following this line,
Zou et al. [33] proposed two quaternion methods named
quaternion collaborative and sparse representation-based clas-
sification models for color face recognition, which aims to
learn the collaborative or sparse coefficients of a testing sam-
ple, and defined specific operators to convert the quaternion
variables into real domain.

Essentially, the proposed LRQA is different from [22], [33]
since the methods in [22] and [33] belong to the
one-dimensional vector sparse representation methods, while
our proposed LRQA belongs to the two-dimensional low-rank
matrix approximation method, which imposes the sparsity on
the singular values of the quaternion matrix.

III. PRELIMINARIES

In this section, we briefly review some mathematical nota-
tions and definitions for quaternion number and quaternion
representation. In this paper, scalars, vectors, matrices, and
tensors are denoted as lowercase letters, boldface lowercase
letters, boldface capital letters, and boldface Euler script
letters, e.g., x , x, X, and X, respectively. Following [22], [31],
a dot above the variable (e.g., ẋ ∈ H) is to denote the variable
in quaternion space H.

As a generalization of the real space R and complex
space C, the quaternion space was firstly introduced by
Hamilton [47]. A quaternion number ẋ includes one real
number and three imaginary parts, i.e.,

ẋ = x0 + x1i + x2j + x3k, (2)

where xl ∈ R (l = 0, 1, 2, 3) is real number, and i, j and
k are three imaginary units. If x0 = 0, ẋ is called the pure
quaternion.

Several important definitions of norm, properties and oper-
ator of quaternion numbers and matrices are introduced as
following: Given a quaternion number ẋ and a quaternion
matrix Ẋ ∈ Hm×n ,

• The conjugate operator ẋ , the modulus |ẋ |, and the
inverse ẋ−1 of ẋ : ẋ = x0 − (x1i + x2j + x3k), |ẋ | =√

x2
0 + x2

1 + x2
2 + x2

3 , ẋ−1 = ẋ∗
|ẋ|2 ; The conjugate opera-

tor Ẋ, the transpose operator ẊT , the conjugate transpose
Ẋ�: Ẋ = (ẋi, j ), ẊT = (ẋ j,i), Ẋ� = (Ẋ)T = ẊT = (ẋ j,i);

• The F-norm of Ẋ: ‖Ẋ‖F = ( m∑
i=1

n∑
j=1

|ẋi, j |2
) 1

2 .

• Ẋ ∈ Hm×m is called unitary quaternion matrix if and only
if ẊẊ� = Ẋ�Ẋ = Im where Im ∈ Rm×m is a real identity
matrix.

Definition 1 (Cayley-Dickson construction [48] and Com-
plex adjoint form [28]): For any quaternion matrix Ẋ =
X0 + X1i + X2j + X3k ∈ Hm×n , it can be represented by
an ordered pair of complex matrices Xa, Xb ∈ Cm×n , i.e.,

Ẋ = Xa + Xbj, (3)

where Xa = X0 + X1i, Xb = X2 + X3i. Then the complex
adjoint form of Ẋ is formulated as

χẊ =
[

Xa Xb

−Xb Xa

]
∈ C

2m×2n . (4)

Please refer to [28], [49] for detailed introduction of quater-
nion algebra.

In Section IV-B, a third-order tensor X of size m × n × 3
is transformed into a quaternion matrix Ẋ ∈ H

m×n by setting
three frontal slices of X as the three imaginary parts of Ẋ,
i.e., Ẋ = X(:, :, 1)i + X(:, :, 2)j + X(:, :, 3)k. In Section V,
the estimated quaternion matrix Ẋ is transformed back to a
color image by extracting the three imaginary parts of Ẋ as
three color channels.

IV. LOW-RANK QUATERNION APPROXIMATION

Considering that the existing LRMA-based methods may
suffer from performance degradation of color image process-
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ing since they are initially designed in the real settings for
grayscale image processing, we propose the low-rank quater-
nion approximation (LRQA) for the better capture of the
cross-channel relationship. We first solve two challenges of
LRQA, and then propose the general framework of LRQA for
better quaternion rank approximation.

A. LRQA

Given a quaternion matrix Ẏ , the proposed LRQA is
defined as

min
Ẋ

1

2
‖Ẋ − Ẏ‖2

F + λ ∗ rank(Ẋ), (5)

where rank(Ẋ) is the rank function of quaternion matrix Ẋ.
As for how to construct the quaternion matrix Ẏ, please refer
to Section V.

Different from LRMA in real domain, LRQA in Eq. (5)
poses at least two challenges for color image analysis: the
first one is how to define the rank of a quaternion matrix;
the other one is how to obtain the closed-form solution of
quaternion rank regularized minimization problem. In the
following section, we will give the affirmative answer to these
above two questions. Our solution is inspired by the quaternion
singular value decomposition [28], [29], [32].

Theorem 1 ( [28] Quaternion singular value decomposition
(QSVD)): For any quaternion matrix Ẏ ∈ H

m×n of rank r ,
there exist a pair of unitary quaternion matrices U̇ ∈ Hm×m

and V̇ ∈ Hn×n such that

Ẏ = U̇
(

�r 0
0 0

)
V̇�, (6)

where � is the conjugate transpose operator and �r ∈ Rr×r is
a real diagonal matrix.

The above QSVD first introduced by Zhang [28]
in 1996 also enjoys similar forms and properties of the SVD
for a real matrix. For example, all singular values of any
quaternion matrix are nonnegative and have the decreasing
order property. The bigger singular values also preserve the
major color image information, such as the color information
and the structural details. This observation can be found
in [32]. Based on QSVD, we can give the following definition.

Definition 2 (Quaternion rank): The rank of a quaternion
matrix can be defined as the number of nonzero singular
values.
Until now, we have given the positive answer to the first
challenge of Eq. (5). Actually, the quaternion rank is the

l0-norm of singular value vector {σi }min(m,n)
i=1 . Unfortunately,

the l0-norm is nonconvex. Borrowing the idea of the nuclear
norm in real domain, we consider the following quaternion
nuclear norm:

Definition 3 (Quaternion nuclear norm): The quaternion
nuclear norm of a quaternion matrix Ẋ is defined as the sum
of all nonzero singular values, i.e., ‖Ẋ‖� = �iσi (Ẋ).

Intuitively, the nuclear norm is extended into the quaternion
domain by Definition 3 and enjoys the same form since all
singular values are still real numbers. By using the quaternion

nuclear norm, the nonconvex optimization problem (5) can be
relaxed as:

min
Ẋ

1

2
‖Ẏ − Ẋ‖2

F + λ‖Ẋ‖�. (7)

Here, we call (7) as quaternion nuclear norm minimization
(QNNM). The remaining problem is how to obtain the optimal
solution of QNNM (7).

Theorem 2: (Quaternion singular value thresholding
(QSVT)): For any λ > 0 and quaternion matrix Ẏ, the closed-
form solution of QNNM (7) is:

Ẋ∗ = U̇Sλ(�)V̇�, (8)

where Ẏ = U̇�V̇� is the QSVD of Ẏ. The soft thresholding
operator is defined as Sλ(�) = diag(max{σi (Ẏ) − λ, 0}).

The proof of Theorem 2 can be found in the supplemen-
tary material Appendix A. Essentially, our quaternion nuclear
norm is the l1-norm of the singular value vector, while the
quaternion rank is the l0-norm of the singular value vector.
From the above theorem, we can see that QSVT shrinks each
singular value equally, that is, each singular value is minus the
same threshold. Therefore, the quaternion nuclear norm still
over-penalizes larger singular values as well as the nuclear
norm in real domain since l1-norm is a biased estimator of
the l0-norm [1], [3]. This observation encourages us to seek a
more accurate approximation of quaternion rank.

B. General Model of LRQA

Motivated by the promising performance of nonconvex
surrogates in LRMA, we propose a general model of LRQA
as follows:

min
Ẋ

1

2
‖Ẏ − Ẋ‖2

F + λ
∑

i

φ
(
σi (Ẋ), γ

)
, (9)

where φ(·) is defined in Table I. γ is a nonnegative parameter
related to the specific φ(·). In particular, we consider three
special cases:

‖Ẋ‖l,γ =
∑

i

(1 − e
−σi (Ẋ)

γ ); (10)

‖Ẋ‖g,γ =
∑

i

(1 + γ ) ∗ σi (Ẋ)

γ + σi (Ẋ)
; (11)

‖Ẋ‖γ
ω,γ =

∑
i

ωi ∗ σ
γ
i (Ẋ); (12)

where ωi is a nonnegative weight scalar which is used to
balance the contribution for quaternion rank of i -th singular
value. Note that the above three nonconvex rank surrogates
are based on the laplace, geman, and weighted Schatten-γ
functions as defined in Table I, respectively.

Here, we first omit to give the closed-form solution of (9)
and design an experiment on synthetic data to illustrate
the superiority of the general model in Eq. (9) compared
with the QNNM model in Eq. (7). We first use Matlab
script randn(m, r, 3) and randn(r, n, 3) to generate two tensors
A ∈ Rm×r×3 and B ∈ Rr×n×3. Then, the low-rank
tensor X ∈ Rm×n×3 is as the product of A and B,
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Fig. 1. Comparison of QNNM in Eq. (7) and the general model in Eq. (9). It is
easy to observe that the singular values obtained by QNNM are overshrunk
since each singular value is regularized equally. While the singular values
estimated by the general model is closer to the original singular values.

i.e., X = A ⊗ B1. And the additive Gaussian noise with zero
mean and standard variance τ = 5 is added into X to generate
the noisy observation Y, that is, Y = X + τ ∗ randn(m, n, 3).
Finally, we generate quaternion matrices Ẋ ∈ Hm×n and
Ẏ ∈ Hm×n . Due to the fact that the distribution of singular
values can represent the low-rank property [1], [3], [23], [40],
we plot the singular values of clean quaternion matrix Ẋ,
noisy observation Ẏ, and obtained quaternion matrices by hard
thresholding operator, models (7) and (9) in Fig. 1. In Fig. 1,
x-axis denotes the number of singular values while y-axis rep-
resents the corresponding singular values. We can observe that
the distribution of singular values of noisy observation Ẏ (the
red curve) deviates significantly that of clean quaternion matrix
Ẋ (the green curve) due to the existence of Gaussian noise.
Compared with the general model (the black curve), QNNM
overshrinks each singular value since each singular value is
thresholded with a same amount. While, the singular values
obtained by the general model is closer to the original singular
values. Meanwhile, there exits a rapid decline trend of original
singular values of Ẋ, indicating that the quaternion matrix Ẋ
still has the low-rank characteristic. These observations can
also verify the reasonableness of (9).

The remaining question is how to efficiently solve
model (9). Actually, it is intractable to solve the general model
in Eq. (9) due to the complicated operations of the quaternion
algebra and the nonconvexity of φ(·). Here, we focus on solv-
ing model (9) in complex domain due to the striking fact that
computing SVD of the complex adjoint matrix is equivalent to
computing QSVD of the corresponding quaternion matrix and
the lower computation [22]. Based on Definition 1 in Eqs (3)
and (4), the quaternion matrix Ẏ can be conveniently and
efficiently converted into the equivalent complex matrix χẎ,
then the QSVD of Ẏ can be obtained by

U̇ = colo(U1) + colo(−U2)j, (13)

� = rowo(colo(�
′)), (14)

V̇ = colo(V1) + colo(−V2)j, (15)

where χẎ = U�′V� is the SVD of complex matrix χẎ; U =
[U1; U2] ∈ C2m×2m , V = [V1; V2] ∈ C2n×2n ; rowo(U) and
colo(U) denote to extract the odd rows and odd columns of

1Here, ⊗ is the tensor-tensor product, more details can be found in [50].

Algorithm 1 Solving LRQA in Eq. (9) via DC

complex matrix U, respectively. We first give the following
theorem and then derive the solution of Eq. (9).

Theorem 3: Suppose Ẏ = U̇�ẎV̇� is the QSVD of Ẏ ∈
H

m×n and �Ẏ = diag(σẎ), then the optional solution of
Eq. (9) is Ẋ∗ = U̇�ẊV̇�, where �Ẋ = diag(σ ∗) and σ ∗
is obtained by

σ ∗ = argmin
σ≥0

1

2
‖σ − σẎ‖2

2 + λ ∗ φ(σ, γ ). (16)

The proof of Theorem 3 can be found in the supplementary
material Appendix B. Based on Theorem 3, solving Eq. (9)
is transformed into solving Eq. (16) in real domain. How-
ever, φ(·) is continuous, concave, smooth, differentiable, and
monotonically increasing on [0,+∞). Following [3], [17],
the difference of convex (DC) method [51] is exploited to
solve Eq. (16). The main idea of DC is to iteratively optimize
it by linearizing the concave function φ(·) and preserving the
l2-norm term, resulting in the following formula

σ t+1 = argmin
σ≥0

1

2
‖σ − σẎ‖2

2 + λ ∗ ∂φ(σ t )T σ, (17)

where the superscript t denotes the number of iterations;
∂φ(σ t ) is the gradient of φ(·) at σ t . The closed-form solution
of Eq. (17) is

σ t+1 = max{σẎ − λ ∗ ∂φ(σ t ), 0}. (18)

After several iterations, DC methods can converge to a local
optimal σ ∗. Finally, the optimal solution of Eq. (9) is Ẋ∗ =
U̇diag(σ ∗)V̇�. The whole procedure of solving Eq. (9) is
outlined in Algorithm 1.

V. LRQA FOR COLOR IMAGE DENOISING

AND INPAINTING

In this section, we apply the proposed LRQA to two
color image processing tasks: color image denoising and
inpainting.

A. LRQA for Color Image Denoising

Image denoising is an ancient yet hot image processing topic
and its aim is to remove unwanted noise n and restore the
clean image x from the noisy observation y, which can be
formulated as

y = x + n, (19)

where n is generally assumed to be additive white Gaussian
noise with zero mean and variance τ 2

n . However, this inverse



CHEN et al.: LOW-RANK QUATERNION APPROXIMATION FOR COLOR IMAGE PROCESSING 1431

Fig. 2. The flowchart of color image denoising by LRQA.

problem (19) is severely ill-posed without any priors of
image x . Therefore, regularization for image prior knowledge
is needed to stabilize the inversion process. Here, we consider
the nonlocal self-similarity (NSS) and low-rank property for
image denoising task.

Following the procedure of NSS, we first divide the noisy
color image y into many overlapping color patches of size
m ×m ×3 (for example, 6 ×6 ×3). Instead of modeling color
image pixel as a scalar in traditional sparse representation
and LRMA-based methods [1], [2], we use a pure quaternion
number to represent a color image pixel. This is also the main
difference with these existing denoising methods [1], [2], [17].
For an exemplar patch of size m ×m ×3 at position i denoted
by ẏi ∈ Hm2

(ẏi = yr i + ygj + ybk, where yr , yg, yb ∈ Rm2

are the corresponding patch vectors of R, G, B channels), its
similar patch group consists of n nearest neighbor patches
within its local searching window (where n includes ẏi ) and
then is stacked as quaternion column vectors of quaternion
matrix Ẏi = [ẏi1, ẏi2, · · · , ẏin] ∈ Hm2×n . The above
whole procedure is depicted in Fig 2. The key assumption
of NSS is that for any exemplar patch yi , there exist many
similar local patches across a natural image, which implies
that the constructed matrix Yi is low-rank [1]. Similarly,
we assume that our constructed quaternion matrix Ẏi also
has the low-rank characteristic in the quaternion domain.
Based on this assumption, the clean patch group Ẋi can be
obtained by

min
Ẋ

1

τ 2
n

‖Ẏ − Ẋ‖2
F +

∑
i

φ
(
σi (Ẋ), γ

)
, (20)

where ‖Ẏ − Ẋ‖2
F of Eq. (20) is the data fidelity term regu-

larized by the Frobenius-norm, which is consistent with the
assumption in (19) because l2-norm is optimal to suppressing
Gaussian noise. The optimal solution of Eq. (20) can be
obtained by Algorithm 1.

Once the clean patch group Ẋ is learned by Eq. (20),
we transform quaternion matrix Ẋ into real matrix X and
aggregate all patches together to form the clean color image x .
Following [1], [2], [23], we adopt the iterative regularization

Algorithm 2 Color image denoising by LRQA in Eq. (20)

scheme [54] as follows

y(k) = x̂ (k−1) + δ(y − x̂ (k−1)), (21)

where k and δ are the iteration number and the relaxation
parameter, respectively. The flowchart of LRQA for color
image denoising is shown in Fig. 2. The whole procedure of
color image denoising is summarized in Algorithm 2.

B. LRQA for Color Image Inpainting

In this section, we further apply the proposed LRQA to
color image inpainting. Image inpainting targets at filling the
missing pixels from the incomplete observation D. As stated
in [4], [13], and [16], the real images can be approximately
recovered by a low-rank matrix. Therefore, we use the pro-
posed LRQA to recover the color image by the following
model:

min
Ẋ

∑
i

φ
(
σi (Ẋ), γ

)

s.t . P�(Ẋ) = P�(Ḋ), (22)

where � is the set of observed entries of D. P�(Ẋ) denotes
the same size quaternion matrix as Ẋ with P�(Ẋ)i, j = Ḋi, j

if (i, j) ∈ � and zero otherwise.
To make Ẋ separable, we use the variable-splitting tech-

nique [55] and introduce one auxiliary quaternion variable Ė
into Eq. (22) yielding the following model:

min
Ẋ,Ė

∑
i

φ
(
σi (Ẋ), γ

)

s.t . Ẋ + Ė = Ḋ, P�(Ė) = 0̇. (23)

The partial augmented Lagrangian function of Eq. (23) is
defined as

Lμ(Ẋ, Ė; 
̇)=
∑

i

φ
(
σi (Ẋ), γ

)
+ μ

2
‖Ḋ−Ẋ−Ė+ 
̇

μ
‖2

F , (24)

where μ > 0 is the penalty parameter. 
̇ is the Lagrangian
multiplier.
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Algorithm 3 Color image inpainting by LRQA in Eq. (22)

Under the complex altering direction method of multipliers
framework [56], we can iteratively update all variables as
follows

Ẋk+1 = argmin
Ẋ

∑
i

φ
(
σi (Ẋ), γ

)
+ μk

2
‖Ḋ−Ẋ−Ėk + 
̇k

μk
‖2

F ,

(25)

Ėk+1 = argmin
P�(Ė)=0̇

‖Ḋ − Ẋk+1 − Ė + 
̇k

μk
‖2

F , (26)


̇k+1 = 
̇k + μk(Ḋ − Ẋk+1 − Ėk+1), (27)

μk+1 = min{β ∗ μk, μmax}, (28)

where 0 < β < 1+√
5

2 . μmax is the maximum value of the
penalty parameter μ. The closed-form solution of Eq. (25) can
be obtained by Algorithm 1. The optimal Ėk+1 of Eq. (26) is
Ḋ− Ẋk+1 + 
̇k

μk . To guarantee the observed entries unchanged,

P�(Ė) = 0̇ is held throughout the iteration. The whole
procedure of LRQA for color image inpainting is summarized
in Algorithm 3, in which the stopping criterion is defined as
follows

‖Ḋ − Ẋk+1 − Ėk+1‖2
F

‖Ḋ‖2
F

≤ tol, (29)

where tol > 0 is a pre-defined tolerance.

VI. EXPERIMENTS RESULTS

In this section, we conduct several experiments to verify
the effectiveness of the proposed LRQA including two real
color image processing tasks: denoising and inpainting. All
experiments are run in Matlab R2016a on a 64-bit workstation
with a 1.90GHz CPU and 16GB memory.

A. Simulated Noisy Color Image Denoising

Data: We select 12 widely used color images as shown
in Fig. 4. To generate simulated noisy color images, the addi-
tive white Gaussian noise with zero mean and variance τ 2

n
is added to these clean color images. Three noise levels
τ = 10, 30, 50 are considered in our experiments.

Compared methods: We compare the proposed LRQA
with several state-of-the-art SR and LRMA-based denoising
methods, including LSCD [52], KQSVD [22], NNM [16], and
WNNM [53]. For a comprehensive comparison, we imple-
ment WNNM with two versions by the concatenation model

and the monochromatic model, denoted as WNNM-1 and
WNNM-2, respectively. Note that KQSVD is recently pro-
posed color image denoising method based on the vector
sparse representation model and quaternion algebra. LRQA
using the nuclear norm, Laplace function, Geman function, and
weighted Schatten norm are denoted as LRQA-1, LRQA-2,
LRQA-3, and LRQA-4, respectively.

Parameter setting: In Algorithm 2, when τ = 10, 30, 50,
we set patch size to 6×6, 7×7, 8×8, respectively. The number
of similar patches group is set to 70, 90, and 120, respectively.
The iteration K is 8, 12, and 14, respectively. In all cases,
the iterative relaxation parameter δ is fixed to 0.1. Except
for parameter γ in LRQA-4, there exists another parameter
ω which is set as

ωk
i = c

√
n/(σi (Ẋk−1) + �),

where c = 3 ∗ √
2; n is the number of similar patches group;

σi (Ẋ
k−1
i ) is the i -th singular value of Ẋk−1; � is a small value

to avoid being divided by zero.
Evaluation measures: The quantitative quality indexes,

i.e., Peak Signal-to-Noise Ration (PSNR) and Structure Sim-
ilarity (SSIM) [57], are selected to measure the quality of all
denoising methods. In general, the higher values the PSNR and
SSIM are, the better the denoising quality is. All competing
denoising methods are from the source codes and follow the
parameter settings in the orginal papers.

The PSNR and SSIM values of all denoising methods are
reported in Table II. The highest PSNR and SSIM values
are highlighted in bold, and the second-highest ones are
underlined. The average PSNR values of all denoising methods
are also computed. From this table, we have the following
observations:

• In most cases, the proposed LRQA yields the bet-
ter denoising results than the best competing method
WNNM. Among them, LRQA-4

(
LRQA using the

weighted Schatten γ -norm as defined in Eq. (12)
)

achieved the highest PSNR and SSIM values. The average
improvement of the proposed LRQA-4 over WNNM
is around 0.113dB, 0.323dB, and 0.366dB when τ =
10, 30, 50, respectively. Besides, when the variance of
Gaussian noise increases, the advantage of LRQA over
WNNM is more obvious. These observations verify the
effectiveness of the low-rank quaternion approximation
over the low-rank matrix approximation in real domain
for color image denoising. The main reason is that the
proposed LRQA models tree color channels into three
imaginary parts such that the whole color image can be
processed in a holistic manner and more details of color
image can be preserved.

• LRQA-1 (LRQA using the quaternion nuclear norm)
performs worse than our proposed LRQA variants in
all cases. This is because that the quaternion nuclear
norm shrinks each singular value equally, resulting in
over-penalizing larger singular values. This observation
is consistent with that in Fig. 1.

• WNNM-1 outperforms WNNM-2 in all cases, in which
WNNM-1 concatenates three color channels, while
the second one restores each channel of a color image
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TABLE II

QUANTITATIVE EVALUATION (PSND/SSIM) OF THE DIFFERENT IMAGE DENOISING ALGORITHMS

TABLE III

AVERAGE IMPROVEMENT (PSNR(DB)) OF LRQA OVER KQSVD [22]

individually and then combined all results together. This
indicates that the concatenation model-based denoising
method may capture more image information than the
monochromatic model-based ones.

We also give the visual comparison between all competing
methods and LRQA as shown in Figs. 3 and 5. Obviously,
some Gaussian noise still remains in the denoised images by
LSCD. KQSVD and NNM can remove Gaussian noise to some
extent, but oversmooth the results as shown in the highlighted

red rectangle in Figs. 3 and 5. The proposed LRQA-4 achieves
the best visual performance among all denoising methods.

To compare the proposed LRQA with the quaternion-based
denoising method: KQSVD [22], we also give the average
improvement of LRQA over KQSVD as shown in Table III
and their average runtime of them. The average runtime
of KQSVD on all color images is 112.35s while these of
the proposed LRQA-1, LRQA-2, LRQA-3 and LRQA-4 are
1988.12s, 2112.32s, 2123.25s, and 2205.22s, respectively.
One can see that KQSVD is running faster than the proposed
LRQA. The main computation burden of LRQA is performing
the quaternion singular value decomposition and nonlocal self-
similarity. It is natural because the proposed LRQA takes the
low-rank property and the nonlocal self-similarity prior into
consideration. However, all proposed LRQA methods achieve
higher PSNR values over KQSVD. Specifically, LRQA-3 and
LRQA-4 improve more than 1.0dB.
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Fig. 3. Color image denoising results on “Baboon.” (a) Original image; (b) Noisy image corrupted by Gaussian noise with variance τ = 50, respectively;
The denoised image reconstructed by: (c) LSCD [52], (d) KQSVD [22], (e) NNM [16], (f) WNNM-1 [53], (g) QLRMA-1, (h) QLRMA-2, (i) QLRMA-3,
(j) QLRMA-4. The figure is viewed better in zoomed PDF.

Fig. 4. The 12 color images of size 256 × 256 × 3.

B. Real Noisy Color Image Denoising

In order to give an overall evaluation of LRQA,
in this section, we use two real noisy color images2,
i.e., Dog and Bears, to test the proposed LRQA for real
noise removal. These two images are mainly contaminated
by the Gaussian noise [11]. Following [1], we first use the
method in [59] to estimate the noise level, since there is no
groundtruth. We select WNNM [53], NC [60], TLR_HTV [11]
as the competing methods. Fig. 6 displays the denoising results
of all methods. We can observe that some noise also left in
the images by NC and TLR_HTV may oversmooth the image.
The images by WNNM and LRQA are visually similar. While
the structural information among three channels and image
details are well captured by LRQA. This further verify the
advantage and effectiveness of the proposed LRQA.

C. Color Image Inpainting

In this section, we test the performance of the proposed
LRQA for color image inpainting. In particular, we just
consider the model in Eq. (22) using the quaternion nuclear

2http://demo.ipol.im/demo/125/

norm, laplace function and geman function, corresponding to
LRQA-1, LRQA-2, and LRQA-3, respectively, since LRQA
using other nonconvex functions has similar inpainting per-
formance. We compare LRQA with several representative
LRMA-based image inpainting methods, including NNM [16],
TNNR [4], WNNM, MC-NC [21], LMaFit [58], D-N [13]
and F-N [13]. Among them, the first four methods belong to
the matrix rank minimization-based LRMA ones, while the
others are the matrix factorization-based LRMA ones. It is
worth noting that D-N and F-N are recently proposed methods
for image inpainting task. 8 color images are selected as the
test samples as shown in Fig. 7. Following the experimental
settings in [4], [13], all competing methods are performed on
each channel of the test images individually. We also use the
PSNR and SSIM as the quantitative quality.

The quantitative PSNR and SSIM values of all inpainting
methods are reported in Table IV, in which ρ represents
the ratio of the missing pixels. In most cases, LRQA-2 and
LRQA-3 outperform other competing methods. When the ratio
of missing pixels ρ = 0.50, 0.75, the average improve-
ment of LRQA-2 over the best competing method TNNR is
around 0.353dB and 0.969dB, respectively. When ρ = 0.85,
LRQA-2 achieves average 1.051dB improvement over F-N,
further verifying the advantages of LRQA. MC-NC achieves
the comparable results with the proposed LRQA-2 when
ρ = 0.50, while it performs extremely worse than most
of other methods when ρ = 0.85. The visual comparison
between LRQA and all competing inpainting methods on the
seventh images with 85% random missing pixels is shown
in Fig. 8. It is obvious that the proposed LRQA achieves
the best inpainting results. In particular, LMaFit needs to
predefine the rank prior, which is difficult to obtain in
real applications [11], and can not well restore the details.
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Fig. 5. Color image denoising results on “Monarch.” (a) Original image; (b) Noisy image corrupted by Gaussian noise with variance τ = 50; The denoised
image reconstructed by: (c) LSCD [52], (d) KQSVD [22], (e) NNM [16], (f) WNNM-1 [53], (g) QLRMA-1, (h) QLRMA-2, (i) QLRMA-3, (j) QLRMA-4.
The figure is viewed better in zoomed PDF.

TABLE IV

QUANTITATIVE EVALUATION (PSNR/SSIM) OF THE DIFFERENT IMAGE INPAINTING ALGORITHMS

From the comparison between Fig. 8 (d) and 8 (i) restored by
NNM and QNNM, respectively, NNM contains quite blurry
parts while LRQA-1 can restore more details, which directly

verifies the advantage of the quaternion representation. D-N
and F-N yield similar inpainting results with LRQA, however,
the proposed LRQA-2 and LRQA-3 well preserve the light
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Fig. 6. Real color image denoising results on “Dog” and “Bears.”
(a) Real noisy image. The denoised image reconstructed by: (b) NC [60],
(c) WNNM [53], (d) TLR-HTV [11], (e) LRQA. The figure is viewed better
in zoomed PDF.

Fig. 7. The 8 color images for color image inpainting.

Fig. 8. Color image inpainting results on Img7 with 85% random missing
pixels.

of the early morning sun (see the highlighted green rectangle
in Fig. 8 (g) and (h)).

D. Model Analysis

In this section, we aim to analyze the LRQA, including the
parameter selection, empirical convergence, and runtime. Take
the color image inpiainting with 85% random missing pixels
as an example.

Parameter selection: There is only one free parameter γ in
the proposed Algorithms 2 and 3 based on the laplace function.
For color image denoising, γ is experimentally selected from
the interval [0.1 1.15]. For color image inpainting, γ is
selected from [10 60]. Fig. 9 reports the PSNR and SSIM
values of LRQA for color image denoising and inpainting with
different γ . We can see that when γ ranges from 0.5 to 1.15,
LRMA performs better to remove noise, while when γ ranges
from 20 to 40, LRMA achieves promising performance for
filling the missing pixels. The parameter analysis of other
LRQA variants can be implemented in the similar way.

Empirical convergence of LRQA: We also plot the empir-
ical convergence of LRQA for color image inpainting on all
images as shown in Fig. 10, where the Y-axis denotes the
relative error defined in Eq. (29). The convergence curves on

Fig. 9. PSNR and SSIM values of LRQA for color image inpainting with
different γ on Img6 (top) and PSNR and SSIM values of LRQA for color
image denoising with different γ on Img7 (bottom).

Fig. 10. Relative error versus iteration on all images.

TABLE V

AVERAGE RUNTIME (IN SECONDS) FOR COLOR IMAGE INPAINTING

all images have a slight fluctuation around the 10-th iteration.
But after 40 iterations, LRQA converges.

Runtime: To further investigate how LRQA efficiently
processes color images, we report the average runtimes of all
methods for color image inpainting on all images as shown
in Table V. It can be seen that the matrix factorization-based
methods, including LMaFit, D-N and F-N, are fastest. The
reason is that they exploit the matrix factorization to depict
the low-rank property and do not require computing SVD.
WNNM is the slowest method since it not only needs to
perform SVD, but also process three times on three color
channels. The proposed LRQA achieves similar runtime with
that of TNNR.

VII. CONCLUSION

In this paper, we proposed a novel color image processing
model, named low-rank quaternion approximation (LRQA),
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which targets at recovering a low-rank quaternion matrix from
its noisy observation. Different from the existing sparse rep-
resentaion and low-rank matrix approximation (LRMA)-based
methods, LRQA can process the three channels in a holistic
way. Inspired by the excellent performance of the nonconvex
functions for LRMA, we proposed a general model for LRQA,
and then solve the optimization problem. Extensive experi-
ments for color image denoising and inpainting tasks have
demonstrated the effectiveness of the proposed LRQA. In the
future, we would like to extend LRQA to other color image
processing tasks, such as image deblurring, image super-
resolution, image deraining and so on.

APPENDIX A
PROOF OF Theorem 2

Following [40], we need to prove that Eq. (7) has one
unique optimal solution Ẋ# and Ẋ# equals to Ẋ∗ defined in
Eq. (8). Proof: It is obvious that Eq. (7) has one unique
optimal solution since these two terms of Eq. (7) are convex.
The optimal solution is denoted as Ẋ# and it must satisfy the
following formula:

0̇ ∈ Ẋ# − Ẏ + λ∂‖Ẋ#‖�, (30)

where ∂‖Ẋ#‖� denots the subgradient of the quaternion
nuclear norm at Ẋ#. For an arbitrary quaernion matrix
Ẋ ∈ Hm×n , ∂‖Ẋ‖� is defined as

∂‖Ẋ‖� = {U̇V̇� + Ẇ : Ẇ ∈ H
m×n,

U̇�Ẇ = 0̇, ẆV̇ = 0̇, ‖Ẇ‖2 ≤ 1}, (31)

where Ẋ = U̇�V̇� and ‖ · ‖2 is the spectral norm.
Next, we aim to prove that Ẋ∗ satisfies the equality in

Eq. (30). The QSVD of Ẏ is

Ẏ = U̇�V̇� = U̇1�1V̇�
1 + U̇2�2V̇�

2, (32)

where U̇ = [U̇1, U̇2], V̇ = [V̇1, V̇2], U̇1, V̇1 and �1 are the
singular values vectors and singular values corresponding to
singular values larger than λ, while U̇2, V̇2 and �2 correspond
to singular values smaller than or equal to λ. Based on the
above definitions and Eq. (8), Ẋ∗ can be reformulated as

Ẋ∗ = U̇1(�1 − λİ)V̇�
1. (33)

then,

Ẏ − Ẋ∗ = λ(U̇1V̇�
1 + Ẇ), Ẇ = 1

λ
U̇2�2V̇�

2 . (34)

Since U̇ and V̇ are unitary matrices, U̇�
1U̇2 = 0̇ and V̇�

2V̇1 = 0̇.
Therefore, U̇�

1Ẇ = 0̇, ẆV̇1 = 0̇. Since the singular values of
�2 are smller than or equal to λ, we have ‖Ẇ‖2 ≤ 1. From
all above discussions, we can obtain that

0̇ ∈ Ẋ∗ − Ẏ + λ∂‖Ẋ∗‖�, (35)

which means that Ẋ∗ = Ẋ#. This completes the proof.

APPENDIX B
PROOF OF Theorem 3

Proof: Ẏ = U̇�ẎV̇� is the QSVD of Ẏ ∈ Hm×n and
�Ẏ = diag(σ (Ẏ)) = U̇�ẎV̇.

1

2
‖Ẏ − Ẋ‖2

F + λ
∑

i

φ(σi (Ẋ)) (36)

= 1

2
‖�Ẏ − U̇�ẊV̇‖2

F + λ
∑

i

φ(σi (Ẋ)) (37)

Eq. (37) is based on the fact that Frobenius norm is unitarily
variant. Suppose Ȧ = U̇�ẊV̇ and Ȧ and Ẋ have the same
singular values, thus Eq. (37) is equal to

= 1

2
‖�Ẏ − Ȧ‖2

F + λ
∑

i

φ(σi (Ȧ)) (38)

≥ 1

2
‖�Ẏ − �Ȧ‖2

F + λ
∑

i

φ(σi (Ȧ)) (39)

= 1

2
‖�Ẏ − �Ẋ‖2

F + λ
∑

i

φ(σi (Ẋ)) (40)

= 1

2
‖σ(Ẏ) − σ(Ẋ)‖2

2 + λφ(σ(Ẋ)) (41)

≥ 1

2
‖σ(Ẏ) − σ ∗‖2

2 + λφ(σ ∗) (42)

where σ(Ẏ) and σ(Ẋ) are the singular values vectors of
Ẏ and Ẋ, respectively. Using the Hoffman-Wielandt inequality,
we can derive Eq. (39). Then, solving the original model in
Eq. (9) is transformed by solving Eq. (42). Finally, the optimal
solution Ẋ∗ is Ẋ∗ = U̇diag(σ ∗)V̇�.
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